Analysis and contrasting of
different english news channel
shows using Artificially
Intelligent Natural Language
Processing methodologies

Siddharth Garg
18BCB0038

Aim

To develop a way to analyze primetime news using Artificial Intelligence. Using exploratory

data analysis, sentiment analysis, and finally topic modelling using Latent Dirichlet allocation
Algorithm.

Introduction

Natural language processing (NLP) is a subfield of linguistics, computer science,
information engineering, and artificial intelligence concerned with the interactions between
computers and human (natural) languages, in particular how to program computers to
process and analyze large amounts of natural language data.

The data collected was generated from official youtube channels of respective news
channels using speech to text technology.

The project consisted of four phases:

Data Cleaning
Exploratory Data Analysis
Sentiment Analysis

Topic Modelling

it A\

Data Collected from
speech2text

Data Cleaning

Cleaned data

Observations Dbservations

v

Sentiment Analysis

opic Modeling., LDA

Sentiment Plois Topics found

Abstract

Data Cleaning

As a data scientist, we may use NLP for sentiment analysis (classifying words to have
positive or negative connotation) or to make predictions in classification models,
among other things. Typically, whether we're given the data or have to scrape it, the
text will be in its natural human format of sentences, paragraphs, tweets, etc. From
there, before we can dig into analyzing, we will have to do some cleaning to break
the text down into a format the computer can easily understand.

1. Remove HTML
2. Tokenization + Remove punctuation
3. Remove stop words
4. Lemmatization
EDA

In statistics, exploratory data analysis is an approach to analyzing data sets to
summarize their main characteristics, often with visual methods. A statistical model
can be used or not, but primarily EDA is for seeing what the data can tell us beyond
the formal modeling or hypothesis testing task.

Exploratory data analysis is one of the most important parts of any machine
learning workflow and Natural Language Processing is no different.

ndtv indiatoday republic
sa act todayhin LI said Ukay want hlndu e de b vestendar. iy
g— N5
¢ '—' . A0 e
people 5 m
wen | lmcnme kﬂOWC Q wan t“" oy lEL mlﬂ
I'-'l"-"1 2° peop [T meed judgser: MUs1i Nnow

(Word Cloud depicting frequency of tokens occuring in each channel debate)

Sentiment Analysis

Sentiment analysis (also known as opinion mining or emotion Al) refers to the use of
natural language processing, text analysis, computational linguistics, and biometrics
to systematically identify, extract, quantify, and study affective states and subjective
information. Sentiment analysis is widely applied to voice of the customer materials
such as reviews and survey responses, online and social media, and healthcare
materials for applications that range from marketing to customer service to clinical
medicine.

Sentiment analysis refers to the use of natural language processing, text analysis,
computational linguistics, and biometrics to systematically identify, extract, quantify,
and study affective states and subjective information.

Topic Modelling

Topic modeling is an unsupervised machine learning technique that's capable of
scanning a set of documents, detecting word and phrase patterns within them, and
automatically clustering word groups and similar expressions that best characterize
a set of documents.

Latent Dirichlet allocation

In natural language processing, the latent Dirichlet allocation (LDA) is a generative
statistical model that allows sets of observations to be explained by unobserved
groups that explain why some parts of the data are similar. For example, if
observations are words collected into documents, it posits that each document is a
mixture of a small number of topics and that each word's presence is attributable to
one of the document's topics. LDA is an example of a topic model and belongs to
the machine learning toolbox and in wider sense to the artificial intelligence toolbox.

Literature Review

An overview of topic modeling and its current applications in bioinformatics.

Liu, L., Tang, L., Dong, W. et al. SpringerPlus 5, 1608 (2016).
https://doi.org/10.1186/s40064-016-3252-8

This paper starts with the description of a topic model, with a focus on the understanding
of topic modeling. A general outline is provided on how to build an application in a topic
model and how to develop a topic model. Meanwhile, the literature on application of topic
models to biological data was searched and analyzed in depth. According to the types of
models and the analogy between the concept of document-topic-word and a biological
object (as well as the tasks of a topic model), we categorized the related studies and
provided an outlook on the use of topic models for the development of bioinformatics
applications.

Online News Media BiasAnalysis using anLDA-NLP Approach

Sarjoun Doumit and Ali MinaiSchool of Electronic & Computing Systems, College of
Engineering,University of Cincinnati, Ohio 45221-0030, U.S.A. (email:doumitss@mail.uc.edu
& ali.minai@uc.edu).

It is widely recognized that every media outlet has its own "spin” on news, and thisbias has
been described in many ways and at many levels. In political news for example,the bias
can be liberal, conservative, moderate, corporate, etc. In addition, recentresearch has
focused on the 'sentiment dimension’ to further identify and categorizenews bias. This is
achieved through analysis of the adjective and adverb terms found inthe news texts. The
accuracy and generality of these models depend on the evaluationmethods used to
appraise the intensity and emotional weights of the adjectives andadverbs, thus
rendering the results open to controversy. In this paper we propose aunifying system to
extract information from political news texts and analyze it withina cognitive network. We
view the different news media sources as agents with uniquepersonalities, which we
assume are latent within their texts. We use a combinationLatent Dirichlet Allocation
(LDA) and natural language processing (NLP) methodsto identify the different agents’
personality traits with respect to various topics orconcepts. An agent's personality
traits affect its inclination to word a certain event ina specific way. Using the common
concepts stored in the cognitive network, our systemcan compare the different agents on a
unified and normalized platform.

Opinion Mining and Sentiment Analysis.

Bo Pang, Yahoo! Research, USA, bopang@yahoo-inc.com Lillian Lee, Computer Science
Department, Cornell University, USA, llee@cs.cornell.edu

An important part of our information-gathering behavior has always been to find out what
other people think. With the growing availability and popularity of opinion-rich resources
such as online review sites and personal blogs, new opportunities and challenges arise as
people now can, and do, actively use information technologies to seek out and understand
the opinions of others. The sudden eruption of activity in the area of opinion mining and
sentiment analysis, which deals with the computational treatment of opinion, sentiment,
and subjectivity in text, has thus occurred at least in part as a direct response to the surge
of interest in new systems that deal directly with opinions as a first-class object.

This survey covers techniques and approaches that promise to directly enable
opinion-oriented information-seeking systems. Our focus is on methods that seek to
address the new challenges raised by sentiment-aware applications, as compared to those
that are already present in more traditional fact-based analysis. We include material on
summarization of evaluative text and on broader issues regarding privacy, manipulation,
and economic impact that the development of opinion-oriented information-access
services gives rise to. To facilitate future work, a discussion of available resources,
benchmark datasets, and evaluation campaigns is also provided.

Proposed Method

Latent Dirichlet allocation

There has been great interest in Latent Dirichlet Allocation or LDA ever sincethe
publication of the seminal paper by Blei, Ng and Jordan[2]. It is a ma-chine
learning technique (shown in extended version in Fig.1), that evolved froma previous
model calledProbabilistic Latent Semantic Analysis[6] (pLSA) forreducing the
dimensionality of a certain textual corpus while preserving its in-herent statistical
characteristics. LDA assumes that each document in a corpuscan be described as a
mixture of multiple latent topics which, in turn, are dis-tributions over words found
in the documents of the corpus. LDA assumes thatdocuments are made of a list
words where the order of the words is not impor-tanti.e. a bag-Of-words approach.
LDA is a generative model in that it cangenerate a document from a set of topics,
but it can also be used as an inferencetool to extract topics from a corpus of
documents. To generate a corpus ofDdocuments, where each document
hasNdwords, and for a total ofTtopics,LDA's generative algorithm is:1. Pick a
document sizeNd253

2. Pick a set of topicsB-Dirichlet(a)3. For each of theNdwordswnfound in
documentd:(a) Draw a topictwn~Multinomial(B)(b) Draw a
wordwn~Multinomial(gtwn),whereg-Dirichlet(]3).

Figure 1: Directed factor graph for LDA. ¢ is the words-topic distribution, § repre-
sents the topics-document distribution, « is the Dirichlet hyperparameter for 6, and
finally 3 is the Dirichlet hyperparameter for ¢

We start by defining how we view the process of political news story generationand
how bias gets embedded into the very fabric of the original factual
news.LetErepresent a factual event, and Ethe smallest set of factual clauses,ck,that
can summarize eventk, wherek=1,...,Kc. A factual clause contains thebasic semantic
elements to describe the event or parts of the event without anyuse of adjectives
or adverbs which carry sentiment, so Erepresents the mostunbiased text
report of the event. LetOrepresent the existing media outletsas a population of
agents such thatO=Un10i, whereQiis an identifiablemedia outlet with
identityiandnis the total number of media outlets in theenvironment. EachOiis
characterized by a set ofsubjectsSi, where each subjectSijhas abiasBijrepresented as
a setLijofKdijdependent clausesdk, whichcould be either an adjective clause or an
adverb clause. Thus, each dependentclause carries a sentiment, and the pattern of
sentiment overlLijdefines agenti'sbias towards subjectj. We assume that every agent
has a bias for every subjectin its repertoire, though agents may vary in their
subjects.When reporters who work for a specific media outletOicome across a
factualeventE, they first determine what subjectSijthis event is relevant to.
Then,armed with the specific biasBijforSij, they initiate the process of creatinga
news story using the bias in conjunction with the unbiased description Etocreate a
biased version ofE. This is denoted byEi, i.e., sourcei's (biased)report of
eventE. The average news reader receives this biased story as thefinal
product. Our aim is to analyze the biased news story and try to isolate thebiases or
theLijwhich includes the adjectives and adverbs in order to comparethem on a
deeper semantic/cognitive level instead of making a purely lexical-weighted
comparison.We visualize the process ofweavingthe bias into the factual event
as acombination of three sub-processes which we call ‘Actor-assignment,
‘Action-assignment’ and ‘Sentiment-assignment’. These processes work together as
singlecoordinated dynamical units. We call thesememe-synergies(Fig.2) in
analogywith the muscle synergies that underlie motor control in animals. Muscle
syn-ergies are coordinated musculoskeletal degrees of freedom that are jointly
con-trolled as a unit, and form the primitives from which more complex
movementis constructed. Just as muscle synergies combine to move one's
arm to hit atennis ball in a particular style, meme-synergies combine effortlessly to
generatecoherent textual news products with a certain bent. In our model, we
consider amedia’s biased clauses orembedded memesto be preconfigured to trigger
or pro-duce text-generation in accordance with those of the original eventE,
especiallyamongst those that share a similar construct such as a concept or
sentiment.This correspondence of thought and action represents a deeply
embodied viewof human cognition

Codebase

Data Cleaning
#!/usr/bin/env python
import pickle

channels = ['ndtv', 'indiatoday', 'republic']
data = {}
for ¢ in (channels):
with open("transcripts/" + ¢ + ".txt", "rb") as file:

data[c] = [file.read().decode("utf-8")]

import pandas as pd

pd.set_option('max_colwidth',150)

data_df = pd.DataFrame.from_dict(data).transpose()
data_df.columns = ['transcript']

data_df = data_df.sort_index()

Data_df

data_df.transcript.loc['ndtv']

import re

import string

def clean_text_roundl(text):

''"Make text lowercase, remove text in square brackets,
remove punctuation and remove words containing numbers.''"'

text = text.lower ()

10

text = re.sub('\[.*?\]', '', text)

text = re.sub('[%s]' % re.escape(string.punctuation), '',
text)

text = re.sub('\wx\d\wx', '', text)

return text
roundl = lambda x: clean_text_roundl(x)
data_clean = pd.DataFrame(data_df.transcript.apply(roundl))
def clean_text_round2(text):

''"'Get rid of some additional punctuation and non-sensical
text that was missed the first time around.'''

text

re.sub('[¢’“”.]', '', text)
text = re.sub('\n', '', text)
return text
round2 = lambda x: clean_text_round2(x)
data_clean = pd.DataFrame(data_clean.transcript.apply(round2))
data_df.to_pickle("corpus.pkl")
from sklearn.feature_extraction.text import CountVectorizer
cv = CountVectorizer(stop_words='english')
data_cv = cv.fit_transform(data_clean.transcript)

data_dtm = pd.DataFrame(data_cv.toarray(),
columns=cv.get_feature_names())

data_dtm.index = data_clean.index
data_dtm

data_dtm.to_pickle("dtm.pkl")
data_clean.to_pickle('data_clean.pkl')
pickle.dump(cv, open("cv.pkl", "wb"))

EDA
#1/usr/bin/env python

coding: utf-8

#In[1]:

import pandas as pd
data = pd.read_pickle('dtm.pkl")

data = data.transpose()

data.head()

#In[2]:

top_dict = {}
for c in data.columns:
top = data[c].sort_values(ascending=False).head(30)

top_dict[c]= list(zip(top.index, top.values))

top_dict

In[3]:

for channel, top_words in top_dict.items():

11

print(channel)
print(’, ".join([word for word, count in top_words[0:141]))

print('---')

In[4]:

from collections import Counter
Let's first pull out the top 30 words for each comedian
words =[]
for comedian in data.columns:
top = [word for (word, count) in top_dictfcomedian]]
for tin top:

words.append(t)

words

In[5]:

Counter(words).most_common()

In[6]:

12

add_stop_words = [word for word, count in Counter(words).most_common() if count > 6]

add_stop_words

In[16]:

import nltk
from nltk.corpus import stopwords
nltk.download('stopwords')

stop_words = set(stopwords.words('english’))

#In[17]:

add_stop_words=stop_words

add_stop_words

In[18]:

from sklearn.feature_extraction import text

from sklearn.feature_extraction.text import CountVectorizer

Read in cleaned data

data_clean = pd.read_pickle('data_clean.pkl’)

14

Add new stop words
stop_words = text.ENGLISH_STOP_WORDS.union(add_stop_words)

Recreate document-term matrix

cv = CountVectorizer(stop_words=stop_words)

data_cv = cv.fit_transform(data_clean.transcript)

data_stop = pd.DataFrame(data_cv.toarray(), columns=cv.get_feature_names())

data_stop.index = data_clean.index

Pickle it for later use

import pickle

pickle.dump(cv, open("cv_stop.pkl", "wb"))
data_stop.to_pickle("dtm_stop.pkl")

#In[19]:

Let's update our document-term matrix with the new list of stop words
from sklearn.feature_extraction import text

from sklearn.feature_extraction.text import CountVectorizer

Read in cleaned data

data_clean = pd.read_pickle('data_clean.pkl')

Add new stop words
stop_words = text.ENGLISH_STOP_WORDS.union(add_stop_words)

Recreate document-term matrix

cv = CountVectorizer(stop_words=stop_words)
data_cv = cv.fit_transform(data_clean.transcript)
data_stop = pd.DataFrame(data_cv.toarray(), columns=cv.get_feature_names())

data_stop.index = data_clean.index
Pickle it for later use
import pickle

pickle.dump(cv, open("cv_stop.pkl", "wb"))
data_stop.to_pickle("dtm_stop.pkl")

In[20]:

Let's make some word clouds!

Terminal / Anaconda Prompt: conda install -c conda-forge wordcloud

from wordcloud import WordCloud

wc = WordCloud(stopwords=stop_words, background_color="white", colormap="Dark2",

max_font_size=150, random_state=42)

In[22]:

Reset the output dimensions

import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'] = [16, 6]

15

full_names = ['ndtVv', 'indiatoday’, 'republic']

Create subplots for each comedian

for index, comedian in enumerate(data.columns):
wc.generate(data_clean.transcript[comedian])
plt.subplot(3, 4, index+1)
plt.imshow(wc, interpolation="bilinear")
plt.axis("off")

plt.title(full_names[index])

plt.show()

There isnt much to conclude from here so lets jump to Sentiment analysis

Sentiment Analysis
#!/usr/bin/env python
coding: utf-8

#In[1]:

import pandas as pd

data = pd.read_pickle('corpus.pkl’)
data

16

In[2]:

from textblob import TextBlob

pol = lambda x: TextBlob(x).sentiment.polarity

sub = lambda x: TextBlob(x).sentiment.subjectivity
data['polarity'] = data['transcript'].apply(pol)

data['subjectivity'] = data['transcript'].apply(sub)
data

In[9]:

[i foriin data.index]

#In[11]:

Let's plot the results
get_ipython().run_line_magic('matplotlib’, 'inline’)

import matplotlib.pyplot as plt

plt.rcParams['figure.figsize'l = [10, 8]

17

for index, channel in enumerate(data.index):
x = data.polarity.loc[channel]
y = data.subjectivity.loc[channel]
plt.scatter(x, y, color='blue')
plt.text(x+.001, y+.001, channel, fontsize=10)
plt.xlim(-.01, .12)

plt.title('Sentiment Analysis', fontsize=20)

plt.xlabel('<-- Negative -------- Positive -->', fontsize=15)
plt.ylabel('<-- Facts -------- Opinions -->', fontsize=15)
plt.show()

#In[12]:

import numpy as np

import math

def split_text(text, n=10):

"'Takes in a string of text and splits into n equal parts, with a default of 10 equal
parts."

Calculate length of text, the size of each chunk of text and the starting points of
each chunk of text

length = len(text)
size = math.floor(length / n)

start = np.arange(0, length, size)

19

Pull out equally sized pieces of text and put it into a list
split_list =]

for piece in range(n):
split_list.append(text[start[piece]:start[piece]+size])

return split_list

#In[13]:

data

In[14]:

list_pieces =[]

for tin data.transcript:
split = split_text(t)
list_pieces.append(split)

list_pieces

In[15]:

len(list_pieces)

#In[16]:

len(list_pieces[0])

In[18]:

polarity_transcript =[]

for Ip in list_pieces:
polarity_piece =[]
for pinlp:
polarity_piece.append(TextBlob(p).sentiment.polarity)

polarity_transcript.append(polarity_piece)

polarity_transcript

In[22]:

plt.plot(polarity_transcript[0])
plt.title(data.index[0])
plt.show()

In[29]:

20

Show the plot for all comedians

plt.rcParams['figure.figsize'l = [16, 12]

for index, channel in enumerate(data.index):
plt.subplot(3, 4, index+1)
plt.plot(polarity_transcript[index])
plt.plot(np.arange(0,10), np.zeros(10))
plt.title(channel)
plt.ylim(ymin=-.2, ymax=.3)

plt.show()

Unusual to see every channel has been pretty posiitive regarding the ayodhya verdict

#In[]:

Topic Modelling
#1/usr/bin/env python

coding: utf-8

#In[1]:

21

import pandas as pd

import pickle

data = pd.read_pickle('dtm_stop.pkl')

data

In[2]:

from gensim import matutils, models

import scipy.sparse

In[3]:

tdm = data.transpose()

tdm.head()

In[5]:

sparse_counts = scipy.sparse.csr_matrix(tdm)

corpus = matutils.Sparse2Corpus(sparse_counts)

22

In[6]:

cv = pickle.load(open("cv_stop.pkl", "rb"))

id2word = dict((v, k) for k, v in cv.vocabulary_.items())

#In[7].

Ida = models.LdaModel(corpus=corpus, id2word=id2word, num_topics=2, passes=10)

|da.print_topics()

In[8]:

lda = models.LdaModel(corpus=corpus, id2word=id2word, num_topics=3, passes=10)

|da.print_topics()

In[9]:

lda = models.LdaModel(corpus=corpus, id2word=id2word, num_topics=4, passes=10)

|da.print_topics()

23

This approach aint working out

Nouns Only

In[22]:

from nltk import word_tokenize, pos_tag

def nouns(text):
"'Given a string of text, tokenize the text and pull out only the nouns.™
is_noun = lambda pos: pos[:2] == 'NN'
tokenized = word_tokenize(text)
all_nouns = [word for (word, pos) in pos_tag(tokenized) if is_noun(pos)]

return''.join(all_nouns)

In[23]:

data_clean = pd.read_pickle('data_clean.pkl')

data_clean

In[26]:

data_nouns = pd.DataFrame(data_clean.transcript.apply(nouns))

data_nouns

24

In[28]:

from nltk.corpus import stopwords

add_stop_words = set(stopwords.words('english'))

In[29]:

Create a new document-term matrix using only nouns
from sklearn.feature_extraction import text

from sklearn.feature_extraction.text import CountVectorizer

Re-add the additional stop words since we are recreating the document-term matrix

stop_words = text.ENGLISH_STOP_WORDS.union(add_stop_words)

Recreate a document-term matrix with only nouns

cvn = CountVectorizer(stop_words=stop_words)

data_cvn = cvn.fit_transform(data_nouns.transcript)

data_dtmn = pd.DataFrame(data_cvn.toarray(), columns=cvn.get_feature_names())
data_dtmn.index = data_nouns.index

data_dtmn

In[30]:

25

26

Create the gensim corpus

corpusn = matutils.Sparse2Corpus(scipy.sparse.csr_matrix(data_dtmn.transpose()))

Create the vocabulary dictionary

id2wordn = dict((v, k) for k, v in cvn.vocabulary_.items())

#In[31]:

Let's start with 2 topics
ldan = models.LdaModel(corpus=corpusn, num_topics=2, id2word=id2wordn, passes=10)

ldan.print_topics()

In[32]:

Let's try topics = 3
ldan = models.LdaModel(corpus=corpusn, num_topics=3, id2word=id2wordn, passes=10)

ldan.print_topics()

In[33]:

Let's try 4 topics

ldan = models.LdaModel(corpus=corpusn, num_topics=4, id2word=id2wordn, passes=10)

27

ldan.print_topics()

Nouns And Adjectives Both

In[35]:

Let's create a function to pull out nouns from a string of text
def nouns_adj(text):

"'Given a string of text, tokenize the text and pull out only the nouns and
adjectives."

is_noun_adj = lambda pos: pos[:2] == 'NN' or pos[:2] ==’
tokenized = word_tokenize(text)
nouns_adj = [word for (word, pos) in pos_tag(tokenized) if is_noun_adj(pos)]

return''join(nouns_adj)

In[36]:

Apply the nouns function to the transcripts to filter only on nouns
data_nouns_adj = pd.DataFrame(data_clean.transcript.apply(nouns_adij))

data_nouns_adj

In[37]:

Create a new document-term matrix using only nouns and adjectives, also remove
common words with max_df

cvna = CountVectorizer(stop_words=stop_words, max_df=.8)

data_cvna = cvna.fit_transform(data_nouns_adj.transcript)

data_dtmna = pd.DataFrame(data_cvna.toarray(), columns=cvna.get_feature_names())
data_dtmna.index = data_nouns_adj.index

data_dtmna

In[38]:

Create the gensim corpus

corpusna = matutils.Sparse2Corpus(scipy.sparse.csr_matrix(data_dtmna.transpose()))

Create the vocabulary dictionary

id2wordna = dict((v, k) for k, v in cvna.vocabulary_.items())

In[39]:

Let's start with 2 topics

ldana = models.LdaModel(corpus=corpusna, hum_topics=2, id2word=id2wordna,
passes=10)

ldana.print_topics()

In[42]:

28

29

Let's start with 3 topics

ldana = models.LdaModel(corpus=corpusna, hum_topics=3, id2word=id2wordna,
passes=10)

ldana.print_topics()

#In[41]:

Let's try 4 topics

ldana = models.LdaModel(corpus=corpusna, num_topics=4, id2word=id2wordna,
passes=10)

ldana.print_topics()

In[44]:

ldana = models.LdaModel(corpus=corpusna, num_topics=2, id2word=id2wordna,
passes=80)

ldana.print_topics()

Two Topics estimated

#

1. Closure of issues, relief among community
#

2. Party Politics and Media revolvind around the case

In[45]:

corpus_transformed = Idana[corpusnal]

list(zip([a for [(a,b)] in corpus_transformed], data_dtmna.index))

Topic 1 - india today
Topic 2 - ndtv and republic

30

31

Results

Data Cleaning

from sklearn.feature extraction.text import CountVectorizer

= CountVectorizer(stop_words='english')
data cv = cv.fit transform(data clean.transcript)
data_dtm = pd.DataFrame(data_cv.toarray(), columns=cv.get feature names())
data dtm.index = data clean.index
data dtm

aapke aaron aarthi ab aberration abided ability able absent absolutely .. youre youve yupi zafar zakir zameen zameer zfg zoom

indiatoday 0 0 0 0] 0 o 7 a 0 ... 4 1 1 0 0 1 0 0 0
ndtv 0 0 L) 0 0 0 4 a (e 5 3 0 1 1 a 2. 0 0
republic 2 1 0 1 1 1 3 3 1 LS e T 4 0 0 0 a 0 1 2

D orraaees o 0T Anhiimane

Exploratory Data Analysis

ndtv indiatoday nepublic
sayact tnda)’héndu said okay wantl hindu sl s

think Case say

.luﬁ:ﬁzﬁmu's Tmeone kﬂDWcQ want

2° peof - P judgment

people

(Word cloud obtained from number of times words used in the particular speech)

<-- Facts -------- Opinions -->

Sentiment Analysis

Sentiment Analysis

04390 -

0.485 4 indiatoday
™

0.480 4

0475 1

0470 -

0.465 A republic
L

0460 -

ndtw

0455 -

0.00 0.02 0.04 0.06 0.08 0.10
<-- Negative -------- Positive -->

33

indiatoday
0.25 1
0.20 1
0.15 1
0.10 1
0.05 -
T T T T
2 4 B 8
indiatoday ndtw republic
03 03 03
0.2 1 02 0.2
0.1 - 01 01 \/\/\/\
00 0o 0.0
—0.1 A -0.1 1 -0.1
-0.2 T T T T -0.2 T T T T T -0.2 T T T T T
] 4 & i 0 4 B B] 4 & i

Polarity Graph through the debate with respect to time

34

Topic Modelling

[44]: ldana = models.LdaModel(corpus=corpusna, num topics=2, id2word=id2wordna, passes=80)
ldana.print_topics()

[44]: [(o,
'0.003*"closure" + 0.003*"idea" + 0.002*"issues" + 0.002*"mathura" + 0.002*"lives" + 0.002*"beginnings" + 0.001
'community" + 0.001"relief" + 0.001%*"feeling” + 0.001*"mp*'},
{1,
'0.004*"party" + 0.003*"gandhi" + 0.002*"national" + 0.002*"media" + 0.002*"debate" + 0.002*"yeah" + 0.002%"impo
rtant" + 0.002*"board" + 0.002*"idea" + 0.002*"minute"')]

Two Topics estimated

1. Closure of issues, relief among community

2. Party Politics and Media revolvind around the case

55

Conclusion

Two Topics estimated
1. Closure of issues, relief among community
2. Party Politics and Media revolvind around the case

corpus transformed = ldana[corpusnal
list(zip([a for [(a,b)] in corpus_transformed], data_dtmna.index))

[(6, 'indiatoday'), (1., ‘'ndtv'), (1, 'republic')]

Topic 1 - india today

Topic 2 - ndtv and republic

References

[1]Benamara, F.,C.Cesarano,A.Picariello,D.Reforgiato,and V.S.Subrahmanian,
“Sentiment analysis: Adjectives and adverbs are betterthan adjectives
alone”,International AAAI Conference on Weblogs andSocial Media (ICWSM)(2007),
203-206.[2]Blei, D.M.,A.Y.Ng,M.I.Jordan,and J.Lafferty, “Latent
dirichletallocation”,Journal of Machine Learning Research3(2003),
993-1022.[3]Cesarano, C.,A.Picariello,D.Reforgiato,and V.S.Subrahma-nian, “The
oasys 2.0 opinion analysis system.”,International AAAI Con-ference on Weblogs and
Social Media (ICWSM)(2007), 313—-314.[4]Future, Recorded, “Recorded future -
temporal & predictive analyticsengine, media analytics & news analysis” (2010),
[Online; accessed 22-November-2010].[5]Gerner, D.J.,R.Abu-Jabr,P.A.Schrodt,and
.Yilmaz, “Conflict andmediation event observations (cameo): A new event data
framework for theanalysis of foreign policy interactions”,International Studies
Associationof Foreign Policy Interactions(2002).[6]Hofmann, T., “Probabilistic latent

56

semantic analysis”,Uncertainty inArtificial Intelligence, UAI99(1999),
289-296.[7]Kim, D.,and A.Oh, “Topic chains for understanding a news
corpus”,12thinternational Conference on Intelligent Text Processing and
ComputationalLinguistics(CICLING 2011)12(2011).[8]Leskovec, J.,L.Backstrom,and
J.Kleinberg, “Meme-tracking andthe dynamics of the news cycle”,KDD ’09:
Proceedings of the 15th ACMSIGKDD international conference on Knowledge
discovery and data mining(2009), 497-506.[9]Libby, D., “Rss 0.91 spec, revision
3”,Netscape Communications(1997).[10]McClelland, C., “World event/interaction
survey”,Defense Technicallnformation Center(1971).[11]Minai,
A.,M.Perdoor,K.Byadarhaly,S.Vasa,and L.lyer, “Asynergistic view of autonomnous
cognitive systems”,Proceedings of theWorld Congress on Computational
Intelligence(2010).264[12]Newman, D., “Topic modeling scripts and
code”,Department of ComputerScience, University of California, Irvine(2010).[13]Oh,
A.,H.Lee,and Y.Kim, “User evaluation of a system for classifyingand displaying
political viewpoints of weblogs”,AAAI Publications, ThirdInternational AAAI
Conference on Weblogs and Social Media(2009).[14]Palantir, “Privacy and civil
liberties are in palantirs dna” (2004), [Online;accessed
10-December-2010].[15]Proxem, “Antelope (Advanced Natural Language
Object-oriented Pro-cessing Environment)” (2010), [Online; accessed
30-April-2010].[16]Tomlinson, R.G., “World event/interaction survey (weis) coding
manual”,Department of Political Science, United States Naval Academy,
Annapolis,MD.(1993

