

Task 2: IoTMal2020-CDMC: IOT Malware Detection

Malware Family classification using Convolutional Neural
Networks on Byte Sequences

Submitted By:

Siddharth Garg

i@siddharthgarg.in

Vellore Institute of Technology, Vellore

Under guidance of

Prof. Aswani Kumar Cherukuri,

Vellore Institue of Technology, Vellore, India

Dr. Gang Li,

Deakin University, Australia

mailto:i@siddharthgarg.in

 2

I. Problem Background

1.1 Problem Statement

Based on the byte sequences collected at the entry points of ELF files as discriminant features and the
malware families of the programs as training labels, the participants are required to perform a
classification task to predict the malware families of the test samples. The dataset consists of 72,638
samples generated following the procedure below: First, a collection of malicious and benign Linux
programs in ELF format were collected from various sources. Then, from each of these programs, the
first 2K bytes (0-padded if the file is not long enough) starting at the entry point of the file were
extracted. These ASCII strings were then encoded by a simple encryption cipher to remove the sensitive
information and fed to a base64 encoder to yield readable radix-64 representations. Label (family type of
malware) of the binary files are determined by the state-of-art antivirus engines.

The participants are required to provide the prediction of labels of the test samples based on information
provided in the task.

1.2 Data Set Used

The original analysis data of the IoT malware classification task was kindly contributed by Taiwan
Information Security Center (TWISC). The data was processed by the CDMC 2020 committee with all
sensitive information removed.

● "Family" column indicates the family type of the binary file, and is taken as a class label of this
classification task.

● "CP" column indicates the CPU architecture on which the file is compiled. Participants can
determine whether or not to use it as side information to improve the prediction performance.

● "ByteSequence" column is the encoded first 2K bytes of the ELF files following the
aforementioned steps.

Malware Families (labels) to be classified:

Android, Bashlite, BenignWare, Dofloo,Hajime, Mirai,Pnscan, Tsunami, Xorddos

 3

II. Proposed Solution

2.1 Approach Used

The provided encoded byte sequences are extracted from the column of spreadsheet provided using
base64 decoder in order to obtain actual byte sequences. These binary files are then stored separately in
a directory for further processing. The representation of binary sequences is translated into grayscale
images which is further processed through a Convolutional Neural Network.

The solution is inspired from the paper “Malware Classification using Deep Learning based Feature
Extraction and Wrapper based Feature Selection Technique”

2.2 Pipelines for training and inference

2.2.1 Input Pipeline

This input pipeline is common to both the process of training as well as inference, The byte sequences
are first processed through a sequence of data processing procedures in order to make them compatible
with a CNN. Original byte sequences are provided in radix 64 encoded format, hence to obtain the
binary string the sequence is translated using a base64 decoder. The value of each byte is represented as
an integer and processed in the form of an array. These integral values are used to determine the
brightnesses of each pixel of a grayscale image. The images formed are resized to 32x32 in order to
achieve uniformity. These 32x32 images pixel values are flattened and converted to a Comma Separated
File (CSV) with each row representing a single image.

Figure 2.1 - Input Pipeline

 4

2.2.2 Training Pipeline

The CSV obtained from the input pipeline is sampled into training, testing and validation. Training
sample is used to fit the model. The validation set is used for early stopping and hyperparameter
tuning.Testing sample is used to as a metric of model performance. The samples are then normalized
using min max normalization for the feature columns. The weights for the CNN are randomly
initialized. Model is fit according to training data and hyperparameters are tuned according to its
performance on validation set. The weights of the best model are then saved and are used to infer the test
data

Figure 2.2 - Training Pipeline

 5

2.3 CNN Architecture

A custom defined CNN is used in order to obtain inferences. This model uses a combination of
convolutional and dense layers in order to generalize the data and perform the classification task.

Figure 2.3 - CNN Architecture

 6

Figure 2.4 - CNN calculation dot graph

 7

III. Experiment

3.1 Code Screenshots

Figure 3.1 - Conversion of ByteSequence to decoded byte files

Figure 3.2 - Conversion of byte files to images

Figure 3.3 -Resizing images

 8

Figure 3.4 - Writing images to a CSV file

Figure 3.5 - Min Max Normalization

 9

Figure 3.6 - CNN Architecture Definition (Pytorch)

 10

Figure 3.7 - CNN Architecture Definition pt 2(Pytorch)

Figure 3.8 - Data Loading

 11

Figure 3.9 - Fitting the data

Figure 3.10 - Testing results and plotting Confusion Matrix

 12

3.2 Confusion Matrices

Figure 3.11 - Validation Confusion Matrix

Figure 3.12 - Training sample Confusion Matrix

 13

Figure 3.13 - Testing Data Confusion Matrix

3.3 Data Visualization

Figure 3.13 - PCA plot

 14

Figure 3.14 - TNSE plot

IV. Conclusion

Since the dataset provided had given sequential data and training a sequential model for byte sequences
does not yield very accurate results, a CNN was used to generalize the data by converting the byte
sequence to an intermediate representation of images. The trained model achieved an accuracy of 98%
on the training sample and 96% on validation sample.

V. References

[1]Rafique, Muhammad Furqan, et al. "Malware Classification using Deep Learning based Feature
Extraction and Wrapper based Feature Selection Technique." arXiv preprint arXiv:1910.10958 (2019).

[2] “Malware Detection Using Machine Learning”
https://github.com/cyberhunters/Malware-Detection-Using-Machine-Learning

